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ABSTRACT

A new 2D-FDTD method has been proposed to
analyze the dispersion diagram of planar circuits.
Traveling wave field effect transistor (TWFET) is a solid
state device designed to amplify signals over a wide
bandwidth. An analysis of the passive behavior of this
device has been performed using mode-matching technique
and assuming that the passive structure performances are
affected only by the width of the T bar of the gate
electrode. To verify such hypothesis and to determine the
cut-off frequency of the higher order modes that limits its
bandwidth, we have simplified the 2D-FDTD method with
a particular normalization, that permits the analysis of the
case =0 . ,
The proposed approach was tested calculating the
dispersion for some known structures and it has been used
in the TWFET characterization.

INTRODUCTION

Traveling wave field effect transistor (TWFET)
(Fig.1) is a solid state device designed to amplify signals
over a wide bandwidth. It can be considered as a distributed
MESFET, where the amplification effect of field effect
transistor is used in a distributed interaction with the
electromagnetic field, typical of the traveling wave tubes.

An analytical model of this structure has been
introduced in [1], where it is also shown that, to obtain
amplification, it is necessary to have a T-shape cross-
section of the gate, permitting a higher transconductance
and, at the same time, a reduction of losses.

Fig.1 Tridimensional global view of the TWFET
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An analysis of the passive behavior of this device
has been made in [2], using a perturbational approach
modified to determine the losses. Such approach realized
through the mode matching method and the transverse
resonance technique studies the equivalent planar structure,
assuming that the passive structure performances are
affected only by the width of the T bar, and not by the
height or width of the conductor below.

To verify such hypothesis and to determine the cut-
off frequency of the higher order modes that limits its
bandwidth, we have chosen to study the TWFET with a
2D-FDTD method [3,4]. This technique permits to obtain
the dispersion curves of uniform guiding structures, by
using a two-dimensional’ mesh in which the field
components are set on the unit cell as shown in Fig. 2.

Since the analysis is made choosing a propagation
constant 8 and determining the corresponding frequencies, it
is particularly useful to obtain the cut-off frequencies of the
higher order modes.
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Fig.2 The unit cell of the compact 2D-FDTD

THEORY

In [5] it is shown that if in the 3D-FTDT we
introduce a phase shift along the z-direction (propagation
direction) of the phasors of the field components, we can
represent the electromagnetic field in a two dimensional
structure through a real coefficients equation system. The
expressions of H, and Hy are:
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that permits to consider only the real part of the field
components.

In [6] it has been obtained the stability condition for
the algorithm. In [7] a simple method to use a graded lattice
has been introduced. Considering for example the case
Ay, =3Ay; shown in Fig. 3, it has been pointed out how
the calculation of E, (i, ]) and E 2(i0,j) can be obtained
considering these components as belongmg to the coarse
mesh with a second order accuracy.

Starting from considerations exposed in [8], in this
work we simplify the method introducing a particular
normalization of the field E. Observing that system (1) can
be simplified in the hypothesis of a medium having a
constant magnetic permeability, we introduce the
normalized components of the electric field:

;AALyE —E (2a) A —E (2b); AxE -E (2¢)
Replacing (2) in (1), we obtain:
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In such way we have reduced the number of
computational operations per cell and per time step from 32
(20 sums plus 12 multiplications) to 29 (20 sums plus 9
multiplications), simply avoiding making superfluous
calculations. The stability condition shown in [6] is still
valid. With system (3) we determine the time behavior of
the normalized components and not the absolute values of
E. Nevertheless it is not necessary to de-normalize these
data, since to obtain the dispersion diagram we have just to
determine the frequencies of the peaks in the Fourier
spectrum of a field component in an arbitrary point of the
structure.

Among all the available normalizations, the one we
introduced permits the analysis of the case =0 . Moreover
(2) have the advantage of an extra simplification when
Ax = Ay. Thus from (3) we easily obtain an algorithm
with 27 operations (20 sums plus 7 multiplications).
Considering the particular case =0, we obtain a system
with just 21 operations (16 sums plus 5 multiplications),
and, if Ax=Ay, 19 operations (16 sums plus 3
multlpllcatlons).
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In the graded lattice situation shown in fig. 3, we
have to introduce two different normalizations for Ex. In
the fine mesh we pose:

——E, =E; (4a)
while in the coarse mesh we have:

At A
E,=E 4b
HAY2 X x2 ( )

Since they do not involve Ay, we can consider (2b)
and (2c¢) too. System (3) is valid in each zone but boundary
conditions treatment needs some more considerations.

We hgve already pointed out that what we have to
calculate is Exz(io’ j). This component is present in the
expression of Hz(i ,J) in the coarse mesh, and in those of
Hy(ig.j) and H,(ip —1,j) in the fine mesh, The latter
components need a proper normalization of E, (ig,j).

Replacing (4) in (3b) and (3¢) we obtain

H," 2 (ig, ) = H," % (io, )
+BAy,Ex2"(ig, i)+ E,"(ig, i +1)— E,"(io. j) (5a)

A Hzn”%(io ~1,j)= H," Y (io = 1,3)+Ex2" (i )i_y;
1

—Eq"(ig ~ 1)~ Ey"(ig ~1j+1)+ B, (ig- 1)) (5b)

Equation (5a) needs as many operations as (3b),
whereas (5b) needs one more multiplication than (3c¢).
Thus, apart the H,(ig —1,j) calculation, (4), (2b) and (2c)
imply the same saving of computer time shown for the
uniform mesh.

RESULTS

The proposed approach was tested calculating the
dispersion of a NSSS (Non-symmetrical Suspended
Substrate Stripline) studied using the transverse resonance
method and experimentally verified in [9]. Our analysis was
made using a Ay variable step mesh of the kind described
in fig. 3, three times in the part above and once in the part
below the dielectric substrate, reducing the number of cells
from 200x48 to 66x48. The results shown in Fig. 4 are in
excellent agreement both with experiments and with
theoretical results from [9].

To further test the method we considered the study of
shielded multilayer coplanar waveguides cut-off frequencies
developed in {10] and [11].

The results in Fig. 5 show a good agreement for the
fundamental mode to both the approaches [10] ad [11].
Regarding the higher order mode, our results are closer to
those reported in [11]. We tested such case with a
commercial package HFSS (High Frequencies Structure
Simulator) [12] that showed agreement with the results we
obtained. As a consequence the results shown in [10]
should be somehow incorrect.
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Fig.4 Dispersion diagram of the first two modes of a
NSSS. Comparison with [9]. (b=22.86 mm, b'=15.8 mm,
h=b/2, h'=0.1b, €,=2.2, t=0.254 mm, §=0.035 mm)
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Fig.5 /€, of the dominant mode and first higher order
mode as a function of frequency in a shielded multilayer
CWG. Comparison with [10] and [11]. (hp;=hy;=4.5
mm, hj;=1.0 mm, A=20.0 mm,w=s=2.0.mm,
EL1=8u1 = 1.0, €2 =9.35)

After testing the method we applied it to the
TWEFET structure. First we compared the dispersion
diagram obtained from our FDTD method with the results
previously obtained with the mode matching technique [2].

Fig 6 shows a similar quasi-TEM behavior for the
first three modes the structure, moreover showing the
existence of a higher order mode, whose cut-off frequency is
sufficiently high not to disturb the TWFET behavior (cut-
off frequency = 30 GHz).

Then, as previously stated, we checked the effect of a
T gate on the dispersion diagram of the structure. As
observed in Fig. 7 the presence of an actual T structure
slightly affects the fundamental mode’s behaviour that
remains quasi-TEM and does not perturb the higher order
mode. On the contrary a small increasing of the phase-



velocity of two of the three fundamental modes is observed,
with a small reduction of component performances.
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Fig.6 Dispersion curves of quasi-TEM modes and higher
order mode in a planar TWFET structure. Comparison with
results obtained with mode matching method. (s=5 pum,
g=30 um, d=500 pm, sg=10 um, gd= 100 um,
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Fig.7 Dispersion curves of quasi-TEM modes and higher
order mode in a actual T-gate TWFET structure.
Comparison with results shown in fig. 6 (s=5 pum, g=30

um, d=500 um, sg=10 pm, gd= 100 um,
sly=sl,=800um, hy=30um, h,=5000 um, h;=10um,
erGaAs=12-9’ grSi02=3'9)

CONCLUSION

A new 2D-FDTD method has been proposed to
analyze the dispersion diagram of planar circuits. The
technique has been tested on some cases known from
literature and used in the TWFET characterization.
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